Some Characterizations of Finite Hermitian Veroneseans

نویسندگان

  • Joseph A. Thas
  • Hendrik Van Maldeghem
چکیده

We characterize the finite Veronesean Hn ⊆ PG(n(n + 2), q) of all Hermitian varieties of PG(n, q2) as the unique representation of PG(n, q2) in PG(d, q), d≥n(n+2), where points and lines of PG(n, q2) are represented by points and ovoids of solids, respectively, of PG(d, q), with the only condition that the point set of PG(d, q) corresponding to the point set of PG(n, q2) generates PG(d, q). Using this result for n=2, we show that H2 ⊆PG(8, q) is characterized by the following properties: (1) |H2| = q4 + q2 + 1; (2) each hyperplane of PG(8, q) meets H2 in q2 + 1, q3 + 1 or q3 + q2 + 1 points; (3) each solid of PG(8, q) having at least q +3 points in common with H2 shares exactly q2 +1 points with it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings of finite classical groups over field extensions and their geometry

We study some embeddings of finite classical groups defined over field extensions, focusing on their geometry. The embedded groups are subgroups of classical groups lying outside the main Aschbacher classes. We concentrate on PGð8; qÞ where the embedded groups can be seen as automorphism groups of natural geometric objects: Hermitian Veroneseans, Twisted Hermitian Veroneseans and rational curves.

متن کامل

New characterizations of EP, generalized normal and generalized Hermitian elements in rings

We present a number of new characterizations of EP elements in rings with involution in purely algebraic terms. Then, we study equivalent conditions for an element a in a ring with involution to satisfy ana∗ = a∗an or a = (a∗)n for arbitrary n ∈ N . For n = 1, we present some new characterizations of normal and Hermitian elements in rings with involution.

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Further properties of a pair of orthogonal projectors

Representing two orthogonal projectors on a finite dimensional vector spaces (i.e., Hermitian idempotent matrices) as partitioned matrices turns out to be very powerful tool in considering properties of such a pair. The usefulness of this representation is discussed and several new characterizations of a pair of orthogonal projectors are provided, with particular attention paid to the spectral ...

متن کامل

Investigation on the Hermitian matrix expression‎ ‎subject to some consistent equations

In this paper‎, ‎we study the extremal‎ ‎ranks and inertias of the Hermitian matrix expression $$‎ ‎f(X,Y)=C_{4}-B_{4}Y-(B_{4}Y)^{*}-A_{4}XA_{4}^{*},$$ where $C_{4}$ is‎ ‎Hermitian‎, ‎$*$ denotes the conjugate transpose‎, ‎$X$ and $Y$ satisfy‎ ‎the following consistent system of matrix equations $A_{3}Y=C_{3}‎, ‎A_{1}X=C_{1},XB_{1}=D_{1},A_{2}XA_{2}^{*}=C_{2},X=X^{*}.$ As‎ ‎consequences‎, ‎we g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2005